If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7+2(5x+2x^2)=16
We move all terms to the left:
7+2(5x+2x^2)-(16)=0
We add all the numbers together, and all the variables
2(5x+2x^2)-9=0
We multiply parentheses
4x^2+10x-9=0
a = 4; b = 10; c = -9;
Δ = b2-4ac
Δ = 102-4·4·(-9)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{61}}{2*4}=\frac{-10-2\sqrt{61}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{61}}{2*4}=\frac{-10+2\sqrt{61}}{8} $
| 3m=180°-2m | | 8x^2-57x+95=0 | | 2x×x=0.005 | | 8x^2-57x+95=0 | | 2x×x=0.005 | | 5x+7x-53°=127° | | 5x+7x-53°=127° | | 5x+7x-53°=127° | | 5x+7x-53°=127° | | 2x+45°=180° | | 2x+45°=180° | | 2x+45°=180° | | 2x+45°=180° | | 2x+45°=180° | | 1/2x+1=3/2x-9 | | 7(7﹣x)=56 | | 7(7﹣x)=56 | | (5x-10)=(-3x-13) | | (5x-10)=(-3x-13) | | (5x-10)=(-3x-13) | | F(x)=-5x^2+6x-2 | | 1,500=1/5x | | 1,500=1/5x | | 1,500=1/5x | | 1,500=1/5x | | -9(n+4)=-5n-4(4n+36) | | Y=7/1x+30 | | 2.5=+0.2d-4 | | -4(x-1)=A | | 0.75/x=3/204 | | A=7(2x+4) | | A=7(2x-28) |